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Abstract
A technique for designing optimal inputs for

aerodynamic parameter estimation was flight tested on the
F-18 High Angle of Attack Research Vehicle (HARV).
Model parameter accuracies calculated from flight test data
were compared on an equal basis for optimal input
designs and conventional inputs at the same flight
condition.  In spite of errors in the a priori input design
models and distortions of the input form by the feedback
control system, the optimal inputs increased estimated
parameter accuracies compared to conventional 3-2-1-1
and doublet inputs.  In addition, the tests using optimal
input designs demonstrated enhanced design flexibility,
allowing the optimal input design technique to use a larger
input amplitude to achieve further increases in estimated
parameter accuracy without departing from the desired
flight test condition.  This work validated the analysis
used to develop the optimal input designs, and
demonstrated the feasibility and practical utility of the
optimal input design technique.

Nomenclature
A ,B,C ,D system matrices
ay, az linear accelerations, g's

g acceleration due to gravity, ft/sec2

J cost function
M information matrix
N total number of sample times
p, q, r body axis angular velocities, rad/sec
R discrete noise covariance matrix

S i( ) output sensitivity matrix at time i∆t

T maneuver duration, sec
u ni-dimensional control vector
V airspeed, ft/sec
x ns-dimensional state vector
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y no-dimensional output vector

y i( ) output vector at time i∆t

α angle of attack, rad

β sideslip angle, rad

δij Kronecker delta

∆t sampling interval, sec

φ roll angle, rad

δa aileron deflection, rad

δasym
symmetric aileron deflection, rad

δ f trailing edge flap deflection, rad

δr rudder deflection, rad

δs stabilator deflection, rad

µ j jth input amplitude constraint

νν i( ) ith discrete measurement noise vector

Θ pitch angle, rad
θθ np-dimensional parameter vector
θ j jth model parameter

σ j Cramér-Rao bound for the jth  parameter

ξk kth output amplitude constraint

subscripts

o average value
m measured

superscripts

T transpose
-1 matrix inverse

Introduction
Experiment design is important for identifying high

fidelity mathematical models of modern aircraft from
flight test data.  The flight test maneuver (equivalently, the
flight test input) has a major impact on the quality of the
data for modeling purposes.  A good experiment design
must account for practical constraints during the flight
test, while maximizing effectiveness of expensive flight
test time.
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The overall goal is to design an experiment that
produces data from which model parameters can be
estimated accurately.  This translates into exciting the
system modes so that the sensitivities of the model
outputs to the parameters are high and correlations among
the parameters are low.  Frequency sweep inputs1 can be
used to do this, requiring little more than knowledge of
the frequency range of interest for the modeling.  This
technique is restricted to moving a single input at a time,
so that off-axis responses or coupled motions are
generally not well modeled from frequency sweep data.
Frequency sweeps also require relatively long maneuver
times (i.e., 1-2 minutes) to run through the frequency
range of interest.  Low frequency components of the
frequency sweep contribute to long maneuver times, and
also increase the tendency for the aircraft to depart from
the desired flight test condition.  For high performance
aircraft, limited flight test time, multiple control effectors,
and flight conditions such as high angle of attack make the
frequency sweep approach difficult to use and expensive.

An alternate approach is to take advantage of a priori
knowledge about the dynamics of the aircraft to focus the
input energy at frequencies near the system modes.  An
a priori model can be assembled using wind tunnel
aerodynamic data and knowledge of rigid body dynamics.
This permits the design of short flight test maneuvers with
high information content that can be analyzed using
maximum likelihood parameter estimation in the time
domain2,3.  A paradox occurs here, in that very good
inputs will be designed when the a priori model is very
good; however, in this case the experiment is less needed.
Obviously, the input design technique must be robust to
errors in the a priori model.

Designing an input for accurate model parameter
estimation requires rich excitation of the system, which is
frequently at odds with various practical constraints.  One
such practical constraint is the requirement that output
amplitude excursions (e.g., in angle of attack or sideslip
angle) about the flight test condition be limited in order to
assure the validity of an assumed model structure.  Input
amplitudes must be constrained for the same reasons, and
to avoid nonlinearities such as mechanical stops and rate
limiting when the model is linear.

Designing an input that excites the aircraft dynamic
response as much as possible when modal frequencies are
imperfectly known, while simultaneously satisfying
practical constraints, is a difficult problem.  Several
researchers have studied the problem of finding optimal
inputs for aircraft parameter estimation4-13.  The most
serious obstacles to using the results of these studies in
flight have been practical implementation issues.  These
include unrealizable optimal input forms, and failure to
account for closed-loop control, actuator dynamics or
constraints on input and output amplitudes.
Computationally, the difficulties have been selection of an
appropriate optimality criterion, inadequate numerical

optimization techniques for finding global optimal
solutions, and difficulties associated with multiple input
design.

Recent research14-16 has produced an optimal input
design technique which addresses the above issues.  The
technique generates square wave inputs which are
globally optimal in the sense that information content in
the data is maximized for a fixed flight test time, or,
alternatively, specified parameter accuracy goals are
achieved in minimum flight test time.

The optimal input design technique has been shown
to be theoretically sound14,15, has been validated in flight
for aerodynamic model parameter estimation experiments
using pilot implementation, including demonstrated higher
parameter accuracies compared to compound doublet
inputs16, has been used successfully to specify flight test
maneuvers for closed loop flying qualities model
identification at high angles of attack17, and has compared
favorably to other techniques in the literature for a
standard test problem18.  In the latter reference, the global
optimal square wave input produced the lowest value of
the sum of estimated parameter variances, even though the
maneuver time allotted for the optimal square wave input
design was the smallest of any of the techniques studied
(see Table 3 of Ref. [18], p. 281).  This fact, though not
pointed out by the authors of Ref. [18], demonstrates the
effectiveness of the optimal input design technique.

The purpose of this work was to test the optimal
input design technique in flight using a computerized
system to implement the optimal inputs, and to compare
flight test results from the optimal inputs to results from
conventional 3-2-1-1 and doublet inputs similarly
implemented.  The 3-2-1-1 input form has been shown to
be very effective for aircraft parameter estimation in
previous flight test investigations11,12.

The next section outlines the theory involved in the
optimal input design technique.  Next, the F-18 High
Alpha Research Vehicle (HARV) test aircraft and some
details of the flight test procedure are described.
Following this, the results from the flight tests are
presented and discussed.

Theoretical Development
Airplane dynamics can be described by the following

linear model equations:

ẋ(t) = A x(t) + Bu(t) (1)

x(0) = 0 (2)

y(t) = Cx(t) + Du(t) (3)

ym (i) = y(i) + νν(i)   i = 1,2,K, N (4)
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Elements of the state vector x, control vector u, and
output vector y  are perturbation quantities.  The
measurement noise νν i( ) is assumed Gaussian with

E νν(i){ } = 0     and     E νν(i)ννT ( j){ } = R δ i j (5)

Nonlinear models can be used in Eqs. (1) and (3)
without any modification in the following development of
the optimal input design procedure.   Linear models are
used in Eqs. (1) and (3) because of the common practice
of estimating stability and control derivatives from flight
test data, and for consistency with the data analysis to be
given later.

The input quantities were control surface deflections,
with output quantities from air data (α , β), body axis

angular velocities (p, q, r ), Euler angles (φ), and
translational accelerations (ay, az ).  Longitudinal and

lateral cases were treated separately, with the linear model
structure shown above resulting from the usual small
perturbation assumptions2.

Constraints arising from practical flight test
considerations were imposed on all input amplitudes and
selected output amplitudes.  Control surface amplitudes
are limited by mechanical stops, flight control software
limiters, or linear control effectiveness.  Selected output
amplitudes must be limited to avoid departure from the
desired flight test condition and to ensure validity of the
assumed linear model structure.  In addition, constraints
may be required on aircraft attitude angles for flight test
operational considerations, such as flight safety and
maintaining line of sight from the downlink antenna
aboard the aircraft to the ground station.  The constraints
were specified by

uj (t) ≤ µ j ∀t ; j = 1,2,...,ni (6)

yk (t) ≤ ξk ∀t ; k ∈(1,2,...,no ) (7)

where µ j  and ξk  are positive constants.

When estimating model parameter values from
measured data, the minimum achievable parameter
standard errors using an asymptotically unbiased and
efficient estimator (such as maximum likelihood) are
called the Cramér-Rao lower bounds2,3,14.  These
quantities are a function of the excitation of the system
and the noise levels, and collectively measure the
information content in the data.  For a fixed
instrumentation system, the Cramér-Rao lower bounds
are influenced by the excitation of the system, which is
determined by the choice of the input.  The choice of input
implicitly includes the length of the maneuver.

The Cramér-Rao lower bounds for the parameter
standard errors are given by the square root of the
diagonal elements of the dispersion matrix D2,3,14.  The
dispersion matrix is defined as the inverse of the
information matrix M , the latter being a measure of the
information content of the data from an experiment.  The
expressions for these matrices are

M = S i( )T R−1 S i( )
i=1

N

∑ (8)

D = M−1 (9)

where S i( )  is the matrix of output sensitivities to the
parameters,

S i( ) = ∂y i( )
∂θθ θθ=θ̂θ

(10)

and ̂θθ denotes the parameter vector estimate.  The output
sensitivities for the jth parameter appear as the jth column
of the sensitivity matrix, and are computed from

d

dt

∂x
∂θ j













= A
∂x
∂θ j

+ ∂A
∂θ j

x + ∂B
∂θ j

u (11)

∂x
∂θ j

0( ) = 0 (12)

∂y
∂θ j

= C
∂x
∂θ j

+ ∂C
∂θ j

x + ∂D
∂θ j

u (13)

for   j = 1,2,K,np .  Eqs. (11)-(13) follow from

differentiating Eqs. (1)-(3) with respect to θ j , combined

with the assumed analyticity of x.  The output sensitivities
S i( )  can also be computed using finite differences.

From Eqs. (8)-(13), it is clear that the information
matrix elements (and therefore the Cramér-Rao bounds)
depend on the input through the sensitivity equations
(11)-(13).  The input u influences the sensitivities both
directly as a forcing function in the sensitivity equations
and indirectly as an influence on the states, which also
force the sensitivity equations.  The dependence of the
Cramér-Rao bounds on the input is nonlinear in the input
amplitude, regardless of whether or not the system
equations (1) and (3) are linear, because of the nonlinear
character of Eqs. (8) and (9).

Equation (8) is a discrete approximation to a time
integral over the maneuver duration T.  Therefore, when
comparing the effectiveness of various input designs
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using some function of the dispersion matrix D as the
criterion for comparison, the input designs being
compared should have the same maneuver duration and,
in light of the last paragraph, also the same allowable
maximum input amplitude.  This approach contrasts with
comparisons presented in previous works11,12,18, which
were based on constant input energy.  If only constant
input energy is imposed on all inputs, a comparison
among the inputs using a criterion which is a function of
D is inherently unfair because a wide range of maximum
allowable input amplitudes and maneuver duration can
give the same input energy.  The inputs compared in this
work have the same maneuver duration and maximum
allowable input amplitudes, insofar as possible.

Similarly, the dispersion matrix D  depends
nonlinearly on the states, which are often the same as the
outputs.  Therefore, output amplitudes must be
comparable if an input design comparison is to be focused
only on the merits of the input forms.  For this reason, as
well as to ensure validity of the assumed model structure,
the inputs were designed to produce comparable output
amplitudes.  If the maneuver duration, input amplitudes,
and output amplitudes are not the same for all input
designs being compared, it is possible to arrange matters
so that almost any chosen input form will appear to be the
best, based on a criterion function that depends on D.

For the optimal input design, the flight test maneuver
duration T = N ∆t  was fixed a priori due to practical time
constraints of the flight test and an analysis of the rate of
decrease of the Cramér-Rao bounds with increasing
maneuver time using the optimized input.  The cost
function to be minimized was the sum of squares of the
Cramér-Rao bounds for the parameter standard errors,

J = σ j
2

j=1

np

∑ = Tr M−1[ ] = Tr D[ ] for a given T (14)

Another formulation of the cost can be defined to design
the input for minimum flight test time to achieve specific
goals for the Cramér-Rao bounds14.

The optimal input applied to the dynamic system
described by Eqs. (1)-(5) minimizes the cost function in
Eq. (14), subject to the constraints in Eqs. (6) and (7).

Optimal Input Solution Methodology
The optimization problem posed in the last section is

difficult to solve in general.  At this point, considerations
particular to optimal input design for aircraft parameter
estimation problems were invoked in order to limit the
allowable input form to square waves only.  Among these
considerations was analytical work on a similar problem8,
which indicated that the optimal input should be
"bang-bang" (i.e., a full amplitude switching input).  In
addition, simple implementation by either computer or the

pilot was desired.  Finally, previous flight test
evaluations11,12 demonstrated that inputs similar to square
waves were superior to sinusoidal inputs for parameter
estimation experiments, largely due to their richer
frequency spectra.

For the above reasons, and to make the optimization
problem tractable, input forms were limited to square
waves only; i.e., only full positive, full negative, or zero
amplitude was allowed for any input at any time.  Full
input amplitude was used in order to excite the system as
much as possible.  Choice of the pulse timing and having
zero amplitude available gave the optimizer the ability to
use full input amplitudes without exceeding output
amplitude constraints.  With the above restriction on the
input form, the problem becomes a high order
combinatorial problem involving output amplitude
constraints, which is well-suited to solution by the
method of dynamic programming.

Dynamic programming is essentially a very efficient
method for doing a global exhaustive search.  Arbitrary
dynamics such as control surface actuator dynamics,
feedback control, and general nonlinear models can
therefore be included inside the optimization without
difficulty.  The result obtained is a globally optimal square
wave input obtained in a single pass solution.  In
addition, the optimal input design technique includes
provisions to adjust the input possibilities at certain times
in order to account for practical limitations on frequency
content of the input, such as avoiding structural resonance
frequencies.  The dynamic programming solution
smoothly handles the multiple input problem, since this
just changes the number of square wave input
possibilities.  Keeping the system responses within the
range of output space for which the assumed linear model
is valid can be handled directly with dynamic
programming by discarding any input sequence whose
output trajectory exceeds the constraint limits.  More
details on the dynamic programming solution method can
be found in Refs. [14] and [15].

Aircraft and Test Procedure
The F-18 High Alpha Research Vehicle (HARV) is a

modified F/A-18 fighter19.  The flight test inputs were
implemented by a computer-controlled On-Board
Excitation System (OBES).

The pilot initiated each run by selecting a
pre-programmed maneuver using buttons on a Digital
Display Interface (DDI) inside the cockpit.  The aircraft
was then brought to the desired trimmed flight condition
and an engage/disengage button on the DDI was pressed
to initiate the maneuver.  Perturbation inputs were added
directly to the appropriate control surface actuator
command by the OBES, with the feedback control system
still operating.  The pilot held stick and rudder deflections
constant at the trimmed values until the maneuver was
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complete.  The maneuver could be disengaged manually
by the pilot toggling the engage/disengage button, or
automatically by the research flight control system, based
on g-limits, etc.  The automatic flight control implemented
for the flight test maneuvers studied here was the
NASA-1 control law in Thrust Vectoring (TV) mode20.
Pre-programmed commands to the control surface
actuators were standard 3-2-1-1 inputs, doublets, or
square wave inputs obtained from the optimal input
design technique described above.

Various downlink data transmission rates were
employed on the F-18 HARV aircraft, but all of the data
used for analysis was converted to a common sampling
rate of 40 Hz.  Corrections were applied to the angle of
attack, sideslip angle, and linear accelerometer
measurements to account for sensor offsets from the
center of gravity, and the angle of attack measurement
was corrected for upwash.  Data compatibility analysis21

revealed the need for a scale factor correction on the angle
of attack and sideslip angle measurements from the wing
tip vane, and small bias error corrections on the
measurements from the rate gyros and accelerometers.

Results
A priori linear models used for the input design were

derived from a nonlinear batch simulation of the F-18
HARV 22, which uses a wind tunnel database for the
aerodynamics.  Noise variance estimates for the input
design were obtained from previous flight test data
records using an optimal Fourier smoothing technique23.
The models used for parameter estimation from flight test
data were identical in structure to the a priori models,
except that the a priori models did not include linear
accelerometer outputs.

For lateral-directional aircraft dynamics, the state
vector x , input vector u , and output vector y  in
Eqs. (1)-(4) are defined by

x = β p r φ[ ]T u = δr δa 1[ ]T
(15)

y = β p r φ ay[ ]T
(16)

System matrices A , B , C , and D  contain the model
parameters:

A =

Yβ sinαo −cosαo g Vo( )cosΘo

Lβ L p Lr 0

Nβ N p Nr 0

0 1 tanΘo 0





















(17)

B =

Yδ r
Yδa

Yo

Lδ r
Lδa

Lo

Nδ r
Nδa

No

0 0 0





















(18)

C =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Yβ Vo g 0 0 0





















(19)

D =

0 0 0
0 0 0
0 0 0
0 0 0

Yδ r
Vo g Yδa

Vo g azo





















(20)

For longitudinal aircraft short period dynamics, the
state vector x, input vector u, and output vector y in
Eqs. (1)-(4) are defined by

x = α q[ ]T u = δs 1[ ]T y = α q az[ ]T (21)

System matrices containing the model parameters are:

A =
Zα 1

Mα Mq









 (22)

B =
Zδ s

Zo

Mδ s
Mo









 (23)

C =
1 0
0 1

Zα Vo g 0















(24)

D =
0 0
0 0

Zδ s
Vo g azo

















(25)

The data analysis was done using output error
maximum likelihood parameter estimation in the time
domain2,3.  The Cramér-Rao bounds for the parameter
standard errors were computed from the square root of the
diagonal elements of the dispersion matrix D in Eq. (9).
Ordinarily, these values should be corrected for colored
residuals3.  The correction was not done here because the
particular frequency content of the output residuals
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(usually from model structure errors) introduces a
confounding factor in the comparison of data information
content from different input forms.  In the parameter
estimation context, the estimated noise covariance matrix
R used in Eq. (8) provides a measure of the mean square
model fit error for all the outputs, and this was considered
appropriate for the present analysis.  The model structure
was the same for the compared maneuvers, so that the
number of parameters estimated from each data record
was identical.  All data analysis and parameter estimates
used radians for angular measure, but the plots were made
using degrees.

The first input design was a lateral-directional case
using the OBES to implement sequential rudder and
aileron inputs.  The flight condition was 5 degrees angle
of attack and altitude of approximately 25,000 feet.  The
model was given by Eqs. (1)-(5) and (15)-(20).
Perturbation input and output amplitude constraints were:

δr ≤ 4.0 deg δa ≤ 2.5 deg

β ≤ 5.0 deg φ ≤ 32.0 deg
(26)

To effect a fair comparison, the 3-2-1-1 and optimal
inputs were designed with the same input amplitude
constraints in (26), using the same a priori model, and
satisfying the same output amplitude constraints in (26).

The 3-2-1-1 inputs were designed by matching the
frequency of the "2" pulse to the frequency of the
dominant oscillatory mode for the a priori model, and
adjusting amplitudes and control sequence timing so that
the chosen output amplitude constraints were satisfied.
Optimal inputs were designed with a computer program
that implemented the optimal input design procedure
described above14.  The duration of each maneuver was
24 seconds.

The solid lines in Figures 1 and 2 show the input and
output time histories measured in flight for the OBES
lateral-directional 3-2-1-1 and optimal inputs at 5 degrees
angle of attack.  The desired input forms were distorted
somewhat by the feedback control system, as can be seen
in the figures.  The distortion of the input forms by the
lateral-directional feedback control system was not
accounted for in the design process for either input.
Figures 1 and 2 show that the maximum input and output
amplitudes for these two maneuvers were very nearly the
same, and the length of each maneuver was the same.
The maneuvers were run in immediate succession on the
same flight.  With the model structure held fixed for the
data analysis on each maneuver, any differences in the
resulting model parameter accuracies can be attributed to
effect of the input form.

Parameter estimation results for the OBES
lateral-directional 3-2-1-1 and optimal inputs at 5 degrees
angle of attack are given in Table 1.  Column 1 in Table 1

lists the model parameters, column 2 contains the
parameter estimates from the 3-2-1-1 input, and column 3
contains the estimated Cramér-Rao lower bounds for the
parameter standard errors using the 3-2-1-1 input.
Columns 4 and 5 contain the corresponding results for the
optimal square wave input.  The values in parentheses in
column 5 are the percent change in the Cramér-Rao bound
for the parameter standard error, based on the 3-2-1-1
value.  The optimal input reduced parameter standard
errors (equivalently, increased parameter accuracy) by an
average 20%, with lower parameter standard errors for
every estimated parameter.  Parameter estimates in
columns 2 and 4 of Table 1 are generally in good
agreement.

The dashed lines in Figures 1 and 2 are the model
responses computed using the measured inputs and the
estimated model parameters from columns 2 and 4 of
Table 1.  The match is very good in both cases.  The
percent error of the a priori parameter values relative to the
parameter values estimated from flight test data (computed
as the average of values in columns 2 and 4 of Table 1)
varied from 4.2% to 65.1%, with an average value of
24.2%.  Nevertheless, both input design methods based
on the a priori model produced experimental data with
excellent information content, as evidenced by the low
standard error bounds in Table 1.

Symmetric stabilator input designs implemented by
OBES for longitudinal model identification are shown in
Figures 3 and 4.  In this case, the distortion of the input
forms by the feedback control was accounted for in the
a priori model by including a linear model of the feedback
control identified from the nonlinear simulation.  The
flight condition was again 5 degrees angle of attack and
altitude of approximately 25,000 feet.  The model is given
by Eqs. (1)-(5) and (21)-(25).  The same methods were
used for the input designs and the data analysis, except
that the optimal input design was allowed a higher input
amplitude than the 3-2-1-1 input.  This was done to
investigate the capability available with the optimal input
design routine to use higher input amplitudes for
increased parameter accuracies while maintaining the same
output amplitude constraints.  This flexibility is not
available with the 3-2-1-1 input because of its fixed form.
Perturbation input and output amplitude constraints were:

α ≤ 3.0 deg

δs ≤ 3.0 deg for the 3 - 2 -1-1 input

δs ≤ 4.0 deg for the optimal input

(27)

Each maneuver lasted 26 seconds, and the maneuvers
were run in immediate succession on the same flight.  The
left sides of Figures 3 and 4 show the significant
distortion of the stabilator commands resulting from the
longitudinal feedback control.  Parameter estimation
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results are given in Table 2 using the same format as for
Table 1.  The parameter accuracies are now improved by
an average 72% using the optimal input compared to the
3-2-1-1 input, while the output amplitude remains very
nearly within the constraint.  The right sides of Figures 3
and 4 indicate a good match between the measured
outputs and the model responses using the measured
inputs and the estimated model parameters from columns
2 and 4 of Table 2.  The estimates of pitching moment
parameters in columns 2 and 4 of Table 2 do not agree.
Lower parameter standard error bounds for the optimal
input indicate that the pitching moment parameter
estimates from the optimal input should be more accurate.
To check this, a different maneuver at the same flight
condition was used to investigate the prediction capability
of the models using the parameters in Table 2.  Figure 5
shows measured and predicted pitch rate response using
the model parameters from Table 2 with the same model
structure used before.  The stabilator input (not shown)
was a perturbation input with amplitude approximately
± 5 degrees from the trim value of 2 degrees.  The
stabilator input was applied to both models to produce the
prediction responses plotted with the measured response.
The prediction using the parameters estimated from the
3-2-1-1 input (shown on the left side of Figure 5) was
less accurate than the prediction using the parameters from
the optimal input (shown on the right side of Figure 5),
both in frequency and amplitude.  This result gives
confidence that the parameters estimated from the optimal
input maneuver are indeed more accurate, as indicated by
the computed Cramér-Rao bounds.

Finally, two longitudinal maneuvers flown at
20 degrees angle of attack and approximately 25,000 feet
altitude were studied to compare the optimal input design
method to a sequence of doublets.  Each maneuver lasted
16 seconds.  The left side of Figure 6 shows the control
surface deflections for the doublet sequence.  Individual
doublets were commanded for the trailing edge flap,
symmetric aileron, and stabilator, in sequence.  The traces
in Figure 6 are the measured control surface deflections,
which include the effect of the feedback control system.
The optimal input design used only the stabilator.  The left
side of Figure 7 shows measured stabilator deflection for
the optimal square wave input, which was also distorted
by the feedback control.  The two maneuvers were run on
different flights on different days, so the data analysis
was done using non-dimensional stability and control
derivatives.  The model structure was the same as in the
last example, except that the CZq

 parameter was included

for this higher angle of attack flight condition, and extra
control derivatives were included for the doublet sequence
maneuver, since three controls were used.  The additional
controls put the doublet sequence maneuver at a
disadvantage in the comparison because of the additional
parameters to be estimated from the data record.  This
disadvantage was offset somewhat by the wider variety of

excitation capability available using different control
effectors.  The stabilator amplitude perturbations from
trim were approximately the same for the two maneuvers,
as can be seen from Figures 6 and 7.  An imprecise initial
trim caused the nominal angle of attack to drift throughout
the optimal input maneuver in Figure 7.  The right sides
of Figures 6 and 7 show that the maneuvers produced
roughly the same angle of attack perturbations and that the
model matched the measurements very well for both
maneuvers.  Table 3 gives the results of the data analysis
in a format similar to the other tables.  The results indicate
that the optimal input maneuver lowered the estimated
parameter standard errors by an average 64% compared to
the doublet sequence maneuver.

Concluding Remarks
The expense associated with flight testing modern

aircraft dictates that flight test data for modeling purposes
be collected as efficiently as possible.  In this work, the
impact of input form on estimated parameter accuracy was
investigated for three leading input design techniques:
3-2-1-1, doublets, and the optimal square wave.  The
tests were conducted on the F-18 HARV at 5 and 20
degrees angle of attack.  Comparisons were done on an
equal basis, and it was found that the optimal input
decreased estimated parameter standard errors
(equivalently, increased estimated parameter accuracy) by
an average 20% compared to the 3-2-1-1 input.  The
decrease in estimated parameter standard errors improved
to an average 72% using higher input amplitudes in the
optimal input design while maintaining flight condition.
Compared to a doublet sequence, the optimal input
decreased estimated parameter standard errors by an
average 64%.  For all the comparisons, every individual
parameter was estimated more accurately using the
optimal square wave input.

The results of this investigation indicate that a
properly designed 3-2-1-1 input can give good
performance relative to the optimal square wave.  Optimal
square wave input designs demonstrated increased data
information content in all cases studied, but the optimal
input design technique is perhaps most valuable because
of its ability to address practical design issues.  Examples
include an automated ability to limit output amplitude
excursions during the flight test maneuver, good
robustness to errors in the a priori  model and to
distortions in the realized input form, and the design
flexibility to investigate the impact of changes in the
conditions or constraints of the input design, such as
available maneuver time, control surface rate limits, or
input/output amplitude constraints.  Such changes can be
evaluated in terms of estimated parameter accuracies,
using the single pass global optimizer imbedded in the
optimal input design procedure.  Some of these
capabilities were demonstrated in this work using flight
test results.
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Table 1  Maximum Likelihood Results
for Lateral-Directional OBES Maneuvers, α = 5°

3-2-1-1 optimal

Parameter
(a priori)

Estimate Error
Bound

Estimate Error
Bound

(% change)

Yβ

(–0.1316)

–0.0970 0.00130 –0.0859 0.00121
(–7.2)

Yδ r

(0.0285)

0.0304 0.00092 0.0327 0.00079
(–14.1)

Yδa

(0.0053)

0 † 0 †

Lβ

(–11.56)

–11.376 0.04807 –10.764 0.03709
(–22.8)

L p

(–1.592)

–1.8120 0.00695 –1.7998 0.00549
(–21.1)

Lr

(0.5462)
0.3396 0.02238 0.1727 0.02005

(–10.4)
Lδ r

(1.910)

2.3074 0.03979 1.8768 0.03155
(–20.7)

Lδa

(–15.81)

–19.480 0.06234 –17.470 0.04410
(–29.3)

Nβ

(2.139)

1.2807 0.00394 1.3120 0.00284
(–27.9)

N p

(–0.0085)

0 † 0 †

Nr

(–0.0940)
–0.1027 0.00214 –0.0436 0.00189

(–11.7)
Nδ r

(–1.223)

–1.3924 0.00558 –1.3450 0.00427
(–23.5)

Nδa

(0.2444)

0.1738 0.00378 0.2383 0.00278
(–26.6)

† = parameter dropped in model structure determination

Table 2  Maximum Likelihood Results
for Longitudinal OBES Maneuvers, α = 5°

3-2-1-1 optimal

Parameter
(a priori)

Estimate Error
Bound

Estimate Error
Bound

(% change)

Zα
(–0.5832)

–0.5940 0.0126 –0.6050 0.0047
(–62.8)

Zδ s

(–0.1093)

–0.0378 0.0063 –0.0789 0.0032
(–49.3)

Mα
(–2.2600)

–4.543 0.080 –2.195 0.012
(–85.1)

Mq

(–0.2927)

–4.746 0.109 –1.341 0.014
(–86.8)

Mδ s

(–6.0380)

–5.482 0.104 –4.597 0.024
(–76.4)

Table 3  Maximum Likelihood Results
for Longitudinal OBES Maneuvers, α = 20°

Doublets Optimal

Parameter Estimate Error
Bound

Estimate Error
Bound

(% change)

CZα –3.104 0.143 –2.087 0.066
(–53.5)

CZq –45.17 6.91 –71.58 3.72
(–46.1)

CZδ f
–0.4422 0.0165 *

CZδ asym
–0.2243 0.0138 *

CZδ s
–0.7783 0.1002 –0.8846 0.0400

(–60.0)
CMα –0.1792 0.0179 –0.3313 0.0037

(–79.3)
CMq –54.08 1.14 –16.10 0.31

(–72.4)
CMδ f

† *

CMδ asym
–0.0953 0.0019 *

CMδ s
–1.159 0.019 –0.646 0.005

(–71.4)

† = parameter dropped in model structure determination
* = control not used



American Institute of Aeronautics and Astronautics

10

-5

0

5

Rudder
Command

(deg)

Maneuver 372e

-8
-6
-4
-2
0
2
4
6
8

Rudder
Deflection

(deg)

-3
-2
-1
0
1
2
3

Aileron
Command

(deg)

-4

-2

0

2

4

6

0 5 10 15 20 25

Aileron
Deflection

(deg)

Time  (sec)

-2
-1
0
1
2
3
4

flight
model

Sidesl ip
Angle
(deg)

Maneuver 372e

-30

-20

-10

0

10

20

R o l l
Rate

(deg/sec)

-3
-2
-1
0
1
2
3
4

Yaw
Rate

(deg/sec)

-20
-10

0
10
20
30
40
50
60

0 5 10 15 20 25

R o l l
Angle
(deg)

Time (sec)

Figure 1  Lateral-Directional 3-2-1-1 Input, α = 5°
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Figure 7  Longitudinal Optimal Input, α = 20°
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